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SFA Overview

Output-oriented technical efficiency can be written as:

ln yi = ln y∗i − ui, ui ≥ 0

ln y∗i = f(xi;β) + vi

Where ui is production inefficiency and vi is a zero-mean random error term.

If we rearrange this equation, we cal see that ui is the difference between the frontier production
and the observed production, i.e. ui = ln y∗i − ln yi. As ui approaches zero, the producer is becoming
more efficient. We can also construct a measure of efficiency : e−ui = yi

y∗i
. Where e−ui · 100 gives

the percentage of the maximum output that firm i produces. And 0 < e−ui ≤ 1

Distribution-Free Approaches

Today we will cover two (of the three) distribution-free approaches for measuring ui and (later) will
use this to introduce the maximum likelihood estimation methods.

These are called distribution-free approaches because they do not impose any structure on the error
term (vi). These models are deterministic (like DEA), meaning that they exclude the error term
(vi).

IO and OO Distribution-Free TE

Recall that the OO production function is:

y = f(x)e−u

And the IO production function is:
y = f(xe−η)

Then the Cobb-Douglas OO model is:

ln yi = β0 +
∑
j

βj lnxj − ui



And the Cobb-Douglas IO model is:

ln yi = β0 +
∑
j

βj lnxj − (
∑
j

βj)η

Which is equivalent to the OO model with ui = η
∑

j βj

So OO technical inefficiency is equal to ui and we can get IO technical inefficiency from: ηi =
ui∑
βj

.

OO technical efficiency is equal to e−ui and IO technical efficiency is equal to e−ηi .

Distribution-Free Estimation of SFA

Corrected OLS

Let’s assume a Cobb-Douglas production function so that the above measures of OO and IO TE
hold. We need to estimate a frontier function that bounds the observations (ln yi) from above.
Corrected OLS (COLS) does this in a two-stage procedure where slope coefficients are estimated
and the resulting production function is shifted upward until it bounds all observations in the data.

Formally:

Stage 1: OLS Regression
ln yi = β̂0 + x′

i
ˆ̃
β + êi

Because E[ui] ̸= 0, β̂0 is a biased estimate of β0, but
ˆ̃β is a consistent estimate of β̃

Stage 2: Adjust the OLS slope intercept upward by the amount of max{êi}, so that the adjusted
function bounds all observations from above. The residuals of this new estimating equation can
now be written as:

êi −max{êi} = ln yi − {
[
β̂0 +max{êi}

]
+ x′

i
ˆ̃
β} ≤ 0

With
ûi = −(êi −max{êi}) ≥ 0

Where ûi is our measure of OO technical inefficiency, and we can write technical efficiency as:
e−ûi , where e−ui · 100 gives the percentage of the maximum output that firm i produces. And
0 < e−ui ≤ 1.

To estimate IO technical inefficiency, we can adjust this parameter using the regression coefficients:

η̂i =
ûi∑
∀j βj
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The SFA Package

/∗ i n s t a l l data and ado f i l e s from Kumbhakar , S .C. Wang, H−J ,
and Horncast le , A.P. (2014) ∗/

net i n s t a l l s f book_in s ta l l , ///
from ( " https : // s i t e s . goog l e . com/ s i t e / s fbook2014 /home/ i n s t a l l /" ) r ep l a c e

s f b ook_ in s t a l l

∗ Load datase t
use dairy , c l e a r

Note that this will install (user written) SFA ado files to your computer in your PLUS directory
and will install the accompanying datasets in your c:\sfbook_demo for Windows and
/users/c(username)/sfbook_demo for Mac.

COLS in Stata

∗ Let ’ s s t a r t with s i n g l e input , s i n g l e output
global xvar l l a b o r

∗ Stage 1 : OLS r e g r e s s i o n
regress l y $xvar

∗ r e c a l l that the OLS c o e f f i c i e n t on l l a b o r i s c on s i s t en t ,
∗ but the _constant i s not

∗ Stage 2 : ad jus t i n t e r c e p t and es t imate e f f i c i e n c y
∗ s t o r e r e s i d u a l s
predict e , r e s i d

∗ get max( r e s i d )
sum e

∗ generate i n e f f i c i e n c y and e f f i c i e n c y
gen double u = −(e −r (max) )
gen double e f f = exp(−u)

sum u e f f

∗ Can p lo t IO and OO e f f i c i e n c y
gen eff_io_round = round( e f f_io , 0 . 01 )
gen eff_oo_round = round( eff_oo , 0 . 01 )

twoway ( s c a t t e r l y l l abo r , mlabel ( eff_io_round ) ) , ///
l egend ( o f f ) y t i t l e ( " l og ␣ o f ␣milk ␣ product ion " ) name( e f f_io , r ep l a c e ) ///
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t i t l e ( "IO␣ E f f i c i e n c y ␣ Scores " )

twoway ( s c a t t e r l y l l abo r , mlabel ( eff_oo_round ) ) , ///
l egend ( o f f ) y t i t l e ( " l og ␣ o f ␣milk ␣ product ion " ) ///
name( eff_oo , r ep l a c e ) t i t l e ( "OO␣ E f f i c i e n c y ␣ Scores " )

∗ can p lo t OLS and COLS l i n e s :
regress l y $xvar

predict y_hat , xb

qui sum e
gen double y_hat_cols = y_hat + r (max)

twoway ( s c a t t e r l y l l abo r , mlabel ( eff_io_round ) ) ( l i n e y_hat l l a b o r ) ///
( l i n e y_hat_cols l l a b o r ) , l egend ( pos (6 ) c o l (2 ) l a b e l (2 "OLS" ) ///
l a b e l (3 "COLS" ) order (2 3 ) ) y t i t l e ( " l og ␣ o f ␣milk ␣ product ion " ) ///
name( co l s , r ep l a c e )

Corrected Mean Absolute Deviation

Follow the same two step procedure, but use a regression through the median, rather than mean
in the first stage. (CMAD) This is equivalent to running a quantile regression, but rather than
running multiple quantile regressions, you will just run one through the middle (medians).

Qyi(τ |xi) = α(τ) + β(τ)xi

Qyi(
1

2
|xi) = α 1

2
+ β 1

2
xi

Where
ˆβ(τ) = argminβ∈Rp

∑
ρ1/2(yi − x′β)

And

ρτ (u) = u(τ − I(u < 0))

Evaluated at the median, the quantile regression estimator is equivalent to:

ˆβ(τ) = min
β∈Rp

∑
|yi − x′β|
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CMAD in Stata

∗ Stage 1 : quan t i l e r e g r e s s i o n
qreg ly $xvar , quant ( 0 . 5 ) /∗ note t ha t quant ( 0 . 5 ) i s d e f a u l t ∗/

∗ Stage 2 : ad jus t i n t e r c e p t and es t imate e f f i c i e n c y
∗ s t o r e r e s i d u a l s
predict e_cmad , r e s i d

∗ get max( r e s i d )
sum e_cmad

∗ generate i n e f f i c i e n c y and e f f i c i e n c y
gen double u_cmad = −(e_cmad −r (max) )
gen double eff_cmad = exp(−u_cmad)

sum u_cmad eff_cmad

∗ can p lo t OLS and COLS:
reg l y $xvar , quant ( 0 . 5 )

predict y_hat_mad , xb

qui sum e_cmad
gen double y_hat_cmad = y_hat_mad + r (max)

twoway ( s c a t t e r l y l l a b o r ) ( l i n e y_hat_mad l l a b o r ) ///
( l i n e y_hat_cmad l l a b o r ) , l egend ( pos (6 ) c o l (2 ) ///
l a b e l (2 "Mean␣Absolute ␣Deviat ion " ) ///
l a b e l (3 "Corrected ␣Mean␣Absolute ␣Deviat ion " ) ///
order (2 3) ) y t i t l e ( " l og ␣ o f ␣milk ␣ product ion " ) name(cmad , r ep l a c e )

Compare COLS and CMAD

∗ compare COLS and CMAD f r o n t i e r s
twoway ( s c a t t e r l y l l a b o r ) ( l i n e y_hat_mad l l a b o r ) ///
( l i n e y_hat_cmad l l a b o r ) ( l i n e y_hat l l a b o r ) ///
( l i n e y_hat_cols l l a b o r ) , l egend ( pos (6 ) c o l (2 ) ///
l a b e l (2 "Mean␣Absolute ␣Deviat ion " ) ///
l a b e l (3 "Corrected ␣Mean␣Absolute ␣Deviat ion " ) ///
l a b e l (4 "OLS" ) l a b e l (5 "COLS" ) order (4 5 2 3 ) ) ///
y t i t l e ( " l og ␣ o f ␣milk ␣ product ion " ) name( cmad_cols , r ep l a c e )

∗ c r e a t e DEA e f f i c i e n c y s co r e for one−input one−output
gen r a t i o = ly / l l a b o r
qui sum r a t i o
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gen ef f_dea = r a t i o /r (max)
sum ef f_dea

∗ s c a t t e r p l o t with l a b e l s o f e f f i c i e n c y s co r e (round s co r e so p l o t l ooks n i c e r )
gen eff_dea_round = round( eff_dea , 0 . 01 )
twoway s c a t t e r l y l l a b o r , l egend ( o f f ) mlabel ( eff_dea_round ) ///
y t i t l e ( " l og ␣ o f ␣milk ␣ product ion " ) name( dea_eff , r ep l a c e )

∗ c r e a t e a l i n e that goes through the o r i g i n and the most e f f i c i e n t po int
sum l y i f ef f_dea==1
local delta_y = r (max)
sum l l a b o r i f ef f_dea==1
local delta_x = r (max)

local s l ope = ‘ delta_y ’ / ‘ delta_x ’

gen y_hat_dea = ‘ s lope ’∗ l l a b o r

∗ compare a l l
twoway ( s c a t t e r l y l l a b o r ) ( l i n e y_hat_mad l l a b o r ) ///
( l i n e y_hat_cmad l l a b o r ) ( l i n e y_hat l l a b o r ) ///
( l i n e y_hat_cols l l a b o r ) ( l i n e y_hat_dea l l abo r , l c o l o r ( b lue ) ) , ///
l egend ( pos (6 ) c o l (2 ) l a b e l (2 "MAD" ) l a b e l (3 "CMAD" ) ///
l a b e l (4 "OLS" ) l a b e l (5 "COLS" ) l a b e l (6 "DEA" ) order (4 5 2 3 6 ) ) ///
y t i t l e ( " l og ␣ o f ␣milk ␣ product ion " ) name( cmad_cols_dea , r ep l a c e )

∗ compare measures o f e f f i c i e n c y :
order ef f_dea eff_cmad e f f farmid
g so r t −ef f_dea

∗ compare ranks ings :
foreach var o f v a r l i s t e f f eff_cmad ef f_dea {

g so r t −‘var ’
gen rank_ ‘ var ’ = _n

}

order ef f_dea eff_cmad e f f rank_∗ farmid
g so r t −ef f_dea
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SFA Distribution Approaches and Maximum Likelihood Estimation

Overview of Distribution Approaches in Cross-sectional Data

In cross-sectional data we cannot separately identify ui and vi. To do so, we need to make as-
sumptions on the distributions and independence of both. To begin, we will assume that the two
distributions are independent (we probably won’t get to distributions that are related in this course).
vi is typically assumed to be normally distributed with mean 0. It is not as clear what distribution
is most appropriate for ui.

Before investing a bunch of time in doing this, we might want to first apply a simple "check" to see
if it is necessary.

Skewness Test

Schmidt and Lin (1984) propose an OLS residual test for the validity of the SFA specification. We
will use this test on the OLS residuals to determine whether the current SFA specification is a good
approach.

The basic idea: we have a composite error term vi − ui, ui ≥ 0 and vi distributed symmetrically
around zero → the distribution of the error terms should be negatively skewed. This test constructs
a test statistic for skewness of the error terms. If skewness has the correct sign, we reject H0 and
have evidence of the existence of a one-sided error.

The tests:

Schmidt and Lin (1984): sample-moment based test√
b1 =

m3

m2
√
m2

,

Where m2 and m3 are the second and third sample moments of the OLS residuals. If
√̂
b1 < 0 OLS

residuals are skewed to the left, and if
√̂
b1 > 0 they are skewed to the right. In a somewhat angry

Stata journal article Royston (1991) proposes an improvement to this estimator that accounts for
both skewness and kurtosis.

Royston, P. 1991. sg3.5: Comment on sg3.4 and an improved D’Agostino test. Stata Technical
Bulletin 3: 23-24. Reprinted in Stata Technical Bulletin Reprints, vol. 1, pp. 110-112. College
Station, TX: Stata Press.

Coelli (1995) suggests another variant of this test:

M3T =
m3√
6m3

2
N

Note that this comes fro the fact that the third moment of the OLS residuals are asymptotically
distributed as normal with mean zero and variance 6m3

2
N . A convenience of this test is that it relies
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on the normal distribution critical values, whereas the critical values in the above are a source of
contention.

Skewness Tests in Stata

Let’s start with looking at the distribution of OLS residuals:

∗ Look at OLS r e s i d s for normal i ty
l a b e l var e_oo "OLS␣Res idua l s "

∗ get std . d ev i a t i on to p l o t dens i ty
sum e_oo
local sd = r ( sd )

graph twoway histogram e_oo , bin (100) x l ab e l ( − . 6 ( . 2 ) . 6 ) ///
x t i t l e ( "OLS␣Res idua l s " ) legend ( pos (6 ) c o l (3 ) l a b e l (2 "Normal␣ D i s t r i bu t i on " ) ///
l a b e l (3 "Kernel ␣Density " ) order (3 2 ) ) | | function normalden(x , 0 , ‘ sd ’ ) , ///
range (−.6 . 6 ) | | kdens e_oo

∗ Formal t e s t s for skewness
sum e_oo , d

∗ Check that that this i s the test s t a t i s t i c we are i n t e r e s t e d in
qui sum e_oo
local e_mean = r (mean)
egen double m2 = mean ( ( e_oo−‘e_mean ’ )^2 )
egen double m3 = mean ( ( e_oo−‘e_mean ’ )^3 )
local sqrt_b1 = m3/(m2∗m2^(1/2))
display ‘ sqrt_b1 ’
∗ −.73772692

So we have the test statistic, but the critical values for this are somewhat controversial. There are
two main ones we will use that are both conducted using sktest in stata:

s k t e s t e_oo , noadj /∗ una l t e r ed t e s t ∗/
s k t e s t e_oo /∗Royston (1991) a l t e r e d t e s t ∗/

Both tests indicate that we can reject the null of no skewness.

Finally, we can manually estimate the Coelli M3T statistic:

∗ Coe l l i
l o c a l N = _N
l o c a l m3t = m3/ sq r t ( ( 6∗ (m2^3))/ ‘N’ )
d i sp l ay ‘m3t ’
∗ −4.2164605
∗ compare t h i s with normal d i s t r i b u t i o n c r i t i c a l va lue o f ( e . g . ) −1.96.
∗ Confirms our r e j e c t i o n o f the nu l l o f no skewness
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Rejecting the Null Hypothesis of no skewness provides support for our current produc-
tion function specification, which means we should proceed with the ML estimation!

• If we could not reject H0, we might try a different production specification.

• We could also try DEA, but if we find a normal distribution of errors, we should be careful in
attributing differences across firms to efficiency rather than random noise.

The Half-Normal Distribution

Aigner (1977)

ln yi = ln y∗i − ui

ln y∗i = x′β + vi

ui ∼ i.i.d. N+(0, σ2
u)

vi ∼ i.i.d. N(0, σ2
v)

Where ui and vi are independent.

The half-normal distribution can be expressed as either a truncated normal distribution or the
absolute value of the normal distribution (this is called a folded zero-mean normal distribution.

For the truncated-normal distribution, assume that a random variable z ∼ N(µ, σ2
z), with proba-

bility density function g(z). If it is truncated from above at the point α so that z ≥ α, then the
density function is:

f(z) =
g(z)

1− Φ
(
α−µ
σz

) =

1
σz
ϕ
(
z−µ
σz

)
1− Φ

(
α−µ
σz

) , z ≥ α

The density function of ui can be obtained by setting µ = α = 0:

f(ui) =

1
σu

ϕ
(

ui
σu

)
1− Φ (0)

= 2(2πσ2)−
1
2 exp

(
− u2i
2σ2

)

The half-normal log likelihood function for each observation can be written:

Li = − ln

(
1

2

)
− 1

2

(
σ2
v + σ2

u

)
+ lnϕ

(
ϵi√

σ2
v + σ2

u

)
+ lnΦ

(
µ∗i
σ∗

)

µ∗i =
−σ2

uϵi
σ2
v + σ2

u
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σ∗ =
σ2
vσ

2
u

σ2
v + σ2

u

And the sum of all Li gives us our maximization problem.

Note that we cannot restrict the variance parameters to be positive, so to ensure non-negative
variance, we set:

σ2
u = exp(wu)

σ2
v = exp(wv)

Where wu and wv are the unrestricted (constant) parameters estimated in the ML maximization. -
In other words, we must transform the estimates of variance as written in the equation above into
(guaranteed) non-negative values using exp

In Stata:

∗ Use ( user−wr i t t en ) s fmodel command
sfmodel ly , prod d i s t (h) f r o n t i e r ( $xvar ) usigmas ( ) vsigmas ( ) show ///
ml max , d i f f i c u l t g rad i en t g t o l (1 e−5) n r t o l (1 e−5)
∗ note that var iance parameters are exponent ia l s ,
∗ to get var iance parameters :
s f_transform

∗ Compare with OLS
reg ly $xvar

Question: How can we interpret the coefficients in the regressions?

Question: What can we say about returns to scale?

Aside on Maximum Likelihood Estimation in Stata:

• Can usually get estimators to converge faster if provide initial values

• A good place to start with SFA is to use the OLS coefficients (because they should be consistent
estimates)

∗ OLS r e g r e s s i o n
reg ly $xvar
∗ s t o r e c o e f s as vec to r
matrix b_ols = e (b)
∗ l ook at vec to r
matrix l i s t b_ols

∗ Use ( user−wr i t t en ) s fmodel command
sfmodel ly , prod d i s t (h) f r o n t i e r ( $xvar ) usigmas ( ) vsigmas ( ) show
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∗ s f_ i n i t to s e t i n i t i a l va lues , need inputs f o r each parameter
s f_ in i t , f r o n t i e r ( b_ols ) usigmas ( 0 . 1 ) vsigmas ( 0 . 1 )

/∗ Optional : wrapper f o r ml p l o t to search f o r b e t t e r i n i t i a l va lue s
be f o r e s t a r t i n g
sf_srch , f r o n t i e r ( $xvar ) usigmas ( ) vsigmas ( ) n (2 )

∗ note that t h i s w i l l f l a s h a bunch o f graphs because i t i s in f a c t running ml p l o t f o r each va r i ab l e
ml p l o t l c a t t l e
∗/

ml max , d i f f i c u l t g rad i en t g t o l (1 e−5) n r t o l (1 e−5)
∗ note that the ml e s t imat ion converged in only 9 i t e r a t i o n s
∗ ( vs 13 p r ev i ou s l y )
s f_transform

Validation

Central to SFA is that we have a one-sided error term which represents inefficiency. We can use a
likelihood ratio test to test for the presence of a one-sided error term.

The general LR test statistic is:

−2[L(H0)− L(H1)]

Where L(H0) is the log-likelihood value of the restricted (OLS) and unrestricted (SF) model, degrees
of freedom = number of restrictions (here 1)

∗ get l og l i k e l i h o o d from SFA ha l f normal
s fmodel ly , prod d i s t (h) f r o n t i e r ( $xvar ) usigmas ( ) vsigmas ( )
qui ml max , d i f f i c u l t g rad i en t g t o l (1 e−5) n r t o l (1 e−5)
∗ s t o r e l og l i k e l i h o o d
s c a l a r ll_hn = e ( l l )

∗ l og l i k e l i h o o d from OLS
qui r e g r e s s l y $xvar
s c a l a r l l_ o l s = e ( l l )

∗ get LR s t a t :
d i sp l ay −2∗( l l_o l s − l l_hn )

∗ l ook at c r i t i c a l va lue s
sf_mixtable , dof (1 )
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Our critical value of 16.4262 is well above significance at any conventional level, thus we reject the
null hypothesis of no one sided error (i.e. we reject no technical inefficiency)

Estimating Technical Efficiency

Now that we have imposed distributional assumptions on ui , it is not so straightforward to
estimate individual technical inefficiencies. Jondrow et al. (1982) develop a conditional density
function. E(ui|ϵi) Horrace and Schmidt (1996) develop a confidence interval for the (conditional)
estimate.

I am not going to go into these details, but recommend reading and citing the following papers if
you ever include this in a paper:

Jondrow, J., Lovell, C.A.K., Materov, I.S., and Schmidt, P. (1982) "On the estimation of technical
inefficiency in the stochastic frontier production function model," Journal of Econometrics, 19 :
233-238.

Battese, G.E. and Coelli, T.J. (1988). "Prediction of Firm-Level Technical Efficiencies with a
Generalized Frontier production Function and Panel Data," Journal of Econometrics, 38 : 387-399.

Horrace, W.C. and Schmidt, P. (1996). "Confidence Statements for Efficiency Estimates from
Stochastic Frontier Models," Journal of Productivity Analysis, 7 : 275-282.

Bera, A.K. and Sharma, S.C. (1999). "Estimating Production Uncertainty in Stochastic Frontier
Production Function Models," Journal of Productivity Analysis, 12 : 187-210.

∗ use s f_pred i c t to get e f f i c i e n c y s c o r e s
s fmodel ly , prod d i s t (h) f r o n t i e r ( $xvar ) usigmas ( ) vsigmas ( )
qui ml max , d i f f i c u l t g rad i en t g t o l (1 e−5) n r t o l (1 e−5)

s f_pred ic t , bc ( eff_hn ) j lms (u_hn) c i (95)

∗ l ook at summary s t a t s
sum eff_hn u_hn

How can we interpret these results? How are they different from what we have done
so far?

The Half-Normal Distribution with Heteroscedasticity

The above model assumes that variances are constant. (i.e. we have σu not σu,i. But ignoring
heteroscedasticity gives consistent estimates of βs, but inconsistent estimates of technical efficiency.
Heteroscedasticity can be parameterized with some observed exogenous variables:

σ2
u,i = exp(z′u,iwu)
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σ2
v,i = exp(z′v,iwv)

We can use exogenous variables zi to (1) construct heteroskedastic error terms that are a function of
the exogenous variable, and (2) this implicitly assumes that the exogenous variables are inefficiency
explanatory variables. We do this through a single step procedure by writing the variance as a
function of ui:

E(ui) = exp{1
2
ln(2/π) + (zu,i

′wu)}

∗ ha l f−normal with he t e r og ene i t y
∗ we are going to use the va r i ab l e comp
∗ ( IT expendi ture as a percentage o f t o t a l expendi ture )
∗ as the exogenous determininant o f i n e f f i c i e n c y .
∗ Note t h i s i s a somewhat ’ l e an i en t ’ use o f the word exogenous : )

s fmodel ly , prod d i s t (h) f r o n t i e r ( $xvar ) usigmas (comp) vsigmas ( ) show
s f_ in i t , f r o n t i e r ( b_ols ) usigmas ( 0 . 1 0 . 1 ) vsigmas ( 0 . 1 )
sf_srch , f r o n t i e r ( $xvar ) usigmas (comp) n (1) nograph f a s t
ml max , d i f f i c u l t g t o l (1 e−5) n r t o l (1 e−5)

∗ r e cove r the var iance parameters
s f_transform

∗ e f f i c i e n c y index ( and marginal e f f e c t )
s f_pred ic t , bc ( eff_hn2 ) j lms (u_hn2) marginal
g s o r t −eff_hn2
order eff_hn2 eff_hn

A Few Other Models

1. The Truncated-Normal Distribution (with and without heteroscedasticity)

∗ in the above code , r ep l a c e d i s t (h) with :
d i s t ( t )
∗ ( other than that use the same opt ions )

2. The Truncated-Normal with Scaling

∗ in the above code , use the f o l l ow i ng opt ions ( with exogenous determinant )
prod f r o n t i e r ( $xvar ) d i s t ( t ) s c a l i n g h s ca l e ( exogenous_var )///
tau cu vsigmas ( ) show

3. Exponential Distribution

∗ in the above code , r ep l a c e d i s t (h) with :
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d i s t ( e )
∗ r ep l a c e usigmas ( ) with :
e s t a s ( )
/∗ t h i s w i l l be e ta s ( exogenous_var ) in the h e t e r o s k eda s t i c model ∗/
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